
Programming in

faster

Nick Murray

About Me
• There is

LabVIEW
running on the
Navy Boats

• BE (Hons) Electrical & Electronic

• Post Grad Cert in Connected
Environments IoT.

• Started Programming in LabVIEW in
version 6i.

• Experienced in Product Test
Engineering / TestStand

• Worked for CPE Systems for 3 years

• CLD

Acknowledgments / Credit

• Darren Nattinger (The Quick Drop Guy) https://www.dnatt.org/home

I Find Your Lack of LabVIEW Programming Speed Disturbing

An End to Brainless LabVIEW Programming

Become the World’s 3rd Best LabVIEW Presenter

Darren’s LabVIEW nuggets are also a good learning resource on the forums.
https://forums.ni.com/t5/Community-Documents/Darren-s-Nuggets/ta-p/3524320

• Alejandro

https://www.dnatt.org/home
http://bit.ly/labviewspeed
http://bit.ly/brainlesslabview
file:///C:/Users/nickm/Downloads/Become the World's Third Best LabVIEW Presenter.pdf
https://forums.ni.com/t5/Community-Documents/Darren-s-Nuggets/ta-p/3524320

#OurGiantsAreFemale - Beatrice Tinsley
1941 -1981
British-born New Zealand astronomer

and cosmologist, and the first female

professor of astronomy at Yale University,

whose research made fundamental

contributions to the astronomical

understanding of how galaxies evolve, grow

and die. Photo Credit

By%20http:/blog.professorastronomy.com/2008_01_01_archive.html,%20a%20lower%20resolution%20version%20also%20appears%20at%20http:/www.canterbury.ac.nz/alumni/news/beatrice_tinsley_launch.shtml,%20Fair%20use,%20https:/en.wikipedia.org/w/index.php?curid=28093829

Agenda
Various tips on how to program in LabVIEW faster…

• Philosophical ones first

• Then more practical examples

• The future of faster programming.

This presentation will NOT be:

How to improve the runtime performance of your code
I’m showing you how to write code faster (not write faster
code)

• There is another session on faster performant code

Don’t Lose Code You Have Written

• Back up

• Source Code Control

• Be careful to avoid cross
linking when copying code
• Check VI paths are as

expected in Project.

Yes – just last week my test
system blew up my Laptop!

Love the Code You Wrote

• What was I thinking when I wrote that
code a few years ago?

• That code would so much better using
that new feature such as sets…

• Comments – Comment your
structures!

• If it worked and has been debugged
already – just reuse it! Of course, it
could be better – good enough is
quicker.

Project Planning
Spend some time upfront to plan the best way forward.

Rapid Learning Cycles: (Katherine Radeka)

• Close Knowledge Gaps Quickly

• Aims to reduce rework

Use Quick Drop
• Its much faster if you learn the short

codes

• Faster to get to deeply nested VIs than
browsing though the pallets.

• Returns useful VIs that you didn’t know
existed.

Average time to drop an object from the palette:
2.00 seconds
Average time to drop an object with Quick Drop:
0.50 seconds
For an average drop transaction, Quick Drop is

4 times faster than the palettes.

But how do I learn
the shortcuts?

Falling Shortcuts Game

https://forums.ni.com/t5/Quick-
Drop-Enthusiasts/Falling-
Shortcuts/td-p/3537204

Quick Drop Shortcuts
• QD object shortcuts – Installed by default in LabVIEW 2016 and later

• Press Ctrl-Space, then...
• Ctrl-B – Set property/invoke node class

• Ctrl-Shift-B – Set property/invoke node property/method
• Including dotted properties in LabVIEW 2019 and later

• Ctrl-W – wire multiple objects together
• Ctrl-Shift-W will also clean up the wired code

• Ctrl-I – insert an object on one or more wires
• Ctrl-Shift-I – smart insert a single object on multiple wires

• Ctrl-R – remove selected object(s) and rewire pass-through types

• Ctrl-P – replace one or more selected objects

• Ctrl-D – create controls/indicators (type ‘req’ for creation of required inputs only)

• Ctrl-F – Frame block diagram window on primary monitor (LV 2020 and later)

Learn the Short Cuts

•Ctrl – U for Diagram &
Front Panel Cleanup

•Control Click to swap
inputs / connector pane
terminals

•Printout Shortcut Posters

Close All References?

•If you get a reference, close it when you’re done.

•It’s a commonly accepted best practice.

•Easiest way to avoid memory leaks.

Always Close These References

• ActiveX/.NET/hardware
• For ActiveX/.NET, you usually need to close the references in order,
from child to parent, once you’re done with them.

• App/VI that are explicitly opened or obtained from
properties/methods.

• ProjectItem

• Project

Don’t Worry About These Refs

• Anything that inherits from GObject (it’s actually a no-op!)

• Including static control references.

• “This VI” and “This Application” static references.

• Outputs of implicit App and

• VI property/invoke nodes.

All VIs Need Error Case Structures
•Ensures subVI code never
executes if there is an
incoming error.

•Currently the norm in most
subVI template VIs, like
class accessor VIs.

Hardly any VIs need Error Case Structures.

• Any time you can remove a decision point from a diagram, it
opens up all sorts of potential compiler optimizations.

• Less diagram noise

• Less time spent constructing diagrams

• It’s in the class template because it’s easier to remove
code than add code. Just because it’s in the template
doesn’t mean you should keep it.

• Pro-tip: If you do want to remove it, Use Quick Drop - just click the
case structure and press Ctrl-Space, Ctrl-Shift-R (faster than right-
click > Remove Case Structure)

Hardly any VIs need error case structures.

• If your diagram is performing custom error
generation or propagation, then use an error case
structure around its contents so that code doesn’t
run (and potentially mess with an incoming error).

or

Wire Every Error Output Terminal
•Make sure there aren’t
any errors you’re
missing.

•Prevent auto error
handling dialogs
popping up for errors
you don’t care about.

Don’t Wire Error Terminals That Don’t Matter

•If you know a function can’t
reasonably error out, don’t wire
its error terminal. More
opportunities for compiler
optimization and parallelism.

•If you know a function might
error out, but you don’t care,
don’t wire its error terminal.

Don’t be a Slave to Auto Error Handling!
• Automatic error handling (more like Brainless error
handling) is the worst feature ever. Don’t write silly
code because of it!

• You can turn off Auto Error Handling in the Tools >
Options setting that enables it on new VIs.

• Test - Auto Error Handling Detect or Correct - NI Community: a VI
Analyzer test that will turn off this setting on all VIs
in an existing codebase.

https://forums.ni.com/t5/VI-Analyzer-Enthusiasts/Test-Auto-Error-Handling-Detect-or-Correct/ta-p/3508296

Method VIs Need Pass-through Class Wires

•“Train tracks” are visually pleasing.

•It’s convenient to always have the class wire
available as an output from any class member VI.

•Everybody’s code looks like this!

Method VIs Don’t Require Class Outputs!

•If a method VI does not manipulate the class data,
don’t make it a pass-through wire!

•Dynamic dispatch VIs are perfectly happy only having a
class input!

•Method VIs that don’t change pass-through class data
slow debugging down! Only 2 VIs here modify class data

Don’t be Tied to the Train Tracks.

• If the subVIs in the previous API didn’t need to be
serialized, then you could modify the code further
to take advantage of parallel execution:

Also – are all the error
wires really required?

Avoid Global Variables at all Costs!

•Globals are evil!

•They can be easily abused!

•They lead to race conditions!

•Never use globals!

•Use functional globals instead.

Globals are Just One Tool in a Big Tool Box
• Horses for Courses

• Global variables are very easy to use.

• You have the potential to use them in an unsafe,

accidental manner.
• The same could be said for driving a car.
• We still drive, we just use our brains when we do so.

• The safest way to use globals is to write to them in 0 or 1 places.

• Don’t brainlessly replace them with read/write functional globals.
• Same exact functionality, but take longer to implement.

• If you’re really paranoid, use the ‘privately scope the global to a
library and wrap the write operation with a private VI’ trick.

Should The Code Already Exist?

• Look first

• CPE Systems Touch Screen Keyboard – it can’t be that hard right?

Don’t Reinvent the Wheel

• ni.com/hiddengems

• Unsupported (but useful) VIs that ship with LabVIEW

• Tools Network download to add hidden gems to Quick Drop/palettes

• Search VIPM

http://www.ni.com/hiddengems

The Future… AI

AI such as ChatGPT / CoPilot is here…. It does know about LabVIEW

LabVIEW (short for Laboratory Virtual Instrument Engineering
Workbench) is a programming language and development environment
specifically designed for creating custom virtual instruments for
data acquisition, instrument control, and industrial automation.

Because LabVIEW is a graphical programming tool, I guess its really hard for you
to help me...

As a language model, I can certainly help answer questions about
LabVIEW programming language and concepts, although as you
mentioned, it may be more challenging for me to provide specific
guidance on designing or debugging a LabVIEW program because of its
graphical nature.

LabVIEW R&D is working on Nigel

Nigel Demo

https://www.youtube.com/live/Bk-dmXEp5xk?si=BLxLRJn7jNutTWoj

NI Connect 2023 Day 2 - Closing Keynote

https://www.youtube.com/live/Bk-dmXEp5xk?si=BLxLRJn7jNutTWoj

Nigel Review

•Code looked AI generated – I assume it is trained on
the connections between VIs rather than layout
(Which Block Diagram cleanup could have helped with)

•Hope Block Diagram cleanup with AI can get code
closer to what humans prefer

Keep Learning

•Check out new features

•Check out Forum

•Attend LUGs & GDevCon!

Thank You

	Slide 1: Programming in faster
	Slide 2: About Me
	Slide 3: Acknowledgments / Credit
	Slide 4: #OurGiantsAreFemale - Beatrice Tinsley
	Slide 5: Agenda
	Slide 6: Don’t Lose Code You Have Written
	Slide 7: Love the Code You Wrote
	Slide 8: Project Planning
	Slide 9: Use Quick Drop
	Slide 10: Falling Shortcuts Game
	Slide 11: Quick Drop Shortcuts
	Slide 12: Learn the Short Cuts
	Slide 13: Close All References?
	Slide 14: Always Close These References
	Slide 15: Don’t Worry About These Refs
	Slide 16: All VIs Need Error Case Structures
	Slide 17: Hardly any VIs need Error Case Structures.
	Slide 18: Hardly any VIs need error case structures.
	Slide 19: Wire Every Error Output Terminal
	Slide 20: Don’t Wire Error Terminals That Don’t Matter
	Slide 21: Don’t be a Slave to Auto Error Handling!
	Slide 22: Method VIs Need Pass-through Class Wires
	Slide 23: Method VIs Don’t Require Class Outputs!
	Slide 24: Don’t be Tied to the Train Tracks.
	Slide 25: Avoid Global Variables at all Costs!
	Slide 26: Globals are Just One Tool in a Big Tool Box
	Slide 27: Should The Code Already Exist?
	Slide 28: Don’t Reinvent the Wheel
	Slide 29: The Future… AI
	Slide 30: Nigel Demo
	Slide 31: Nigel Review
	Slide 32: Keep Learning

